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Abstract 

Federal Aviation Administration (FAA) Air Traffic 

Flow Management (TFM) decision-making is 

based primarily on a comparison of predicted 

traffic demand and capacity (usually called 

Monitor/Alert Parameter, or MAP) at various 

elements of National Airspace System (NAS) such 

as airports, fixes and sectors to identify potential 

congestion. The current FAA Traffic Flow 

Management System (TFMS) and its decision-

support tools operate with deterministic predictions 

and do not consider the stochastic nature of the 

predictions. Sector demand predictions appear to be 

less accurate and stable than predictions for airports 

and fixes. The major reason is that, unlike airports 

and fixes where flights are aggregated in 15-minute 

intervals, TFMS predicts sector demand by 

aggregating flights for each minute and using the 

one-minute peak demand as a measure for sector 

demand for entire 15-minute interval.  This paper 

presents a novel analytical approach to and 

techniques for translating characteristics of 

uncertainty in predicting sector entry times and 

times in sector for individual flights into 

characteristics of uncertainty in predicting one-

minute sector demand counts. The paper shows that 

expected one-minute sector demand predictions are 

determined by a probabilistically weighted average 

of one-minute sector entry demand predictions for 

several consecutive one-minute intervals within a 

sliding time window. The width of the window is 

determined depending on probability distributions 

of errors in flights’ sector entry time predictions. 

Expected one-minute sector demands along with 

standard deviations of demand counts are 

expressed via probabilistic averaging of series of 

one-minute deterministic predictions of number of 

flights entering a sector. The results of the paper 

contribute to probabilistic predictions of congestion 

in airspace. These analytical results can also be 

used to evaluate the impact of improved accuracy 

in flight timing predictions on reducing uncertainty 

in traffic demand predictions, hence leading to 

better identification of congestion in airspace. 

1. Introduction    

Federal Aviation Administration (FAA) Air Traffic 

Flow Management (TFM) decision-making is 

based primarily on a comparison of traffic demand 

and capacity predictions at various National 

Airspace System (NAS) elements such as airports, 

fixes and en-route sectors. The current Traffic Flow 

Management System (TFMS) and its decision-

support tools deal with deterministic predictions 

and neglect the stochastic nature of the predictions.   

An important part of the Next Generation Air 

Transportation System (NextGen) program is the 

transition from deterministic to probabilistic TFM 

that would lead to more realistic and efficient TFM 

decisions.  

Research on probabilistic TFM and related 

problems is underway in many organizations 

including government, private sector and 

academia. Recent results demonstrate the 

potential benefit of applying a stochastic approach 

to TFM (see, e.g., [1] – [13]).  

A general concept of probabilistic TFM for 

managing congestion in the NAS under uncertain 

predictions of demand and capacity, as well as an 

incremental, probabilistic approach to TFM 

decision-making can be found in [10] and [11], 

respectively.  Research results presented in [12] 

and [13] provide an important contribution to 

probabilistic TFM describing a constructive 

approach to incorporating probabilistic weather 

forecasts into probabilistic TFM, as well as design 

of the modeling tool for evaluating TFM strategies. 

The practical value of decision-support tools used 

for probabilistic TFM will significantly depend on 

quality of data used in the tools to represent 

uncertainty in the aviation system, in particular, 

uncertainty in predicting traffic demand and 

capacity. Therefore thorough data analysis along 

with analytical tools are needed to examine the 

sources of uncertainty, to characterize uncertainty 



and to apply advanced statistical methods for 

reducing uncertainty in predictions.     

Research on uncertainty, which is the core issue 

for probabilistic TFM, is conducted in two major 

directions: uncertainty in traffic demand 

predictions and uncertainty in predicting the 

capacity of NAS elements. Each of those 

directions addresses two major elements of the 

NAS: airports and airspace. Although airports and 

airspace are equally important in the NAS and are 

generally subject to similar sources of uncertainty 

in traffic demand and capacity predictions, there 

are substantial differences in measuring both 

demand and capacity in airports and airspace. For 

example, both demand and capacity are better 

defined and measured for airports than for en 

route sectors. Moreover, because of the 

differences in measuring traffic demand in 

airports and in sectors in the current TFMS, the 

TFM specialists noticed that demand predictions 

in sectors are more uncertain, more volatile and 

less reliable than those for airports. The TFMS 

measures traffic demand for airports and sectors 

for each 15-minute interval of the time period of 

interest.  The principal differences in measuring 

traffic demands for sectors and airports are as 

follows: 

1. Traffic demand in sectors is based on one-

minute aggregate counts vs. 15-minute 

arrival or departure counts at airports. 

2. Current TFMS determines traffic demand 

in sectors on a 15-minute basis and 

considers the maximum one-minute count 

within a 15-minute interval as the traffic 

demand for the sector for entire 15-minute 

interval, while a 15-minute traffic demand 

for airports includes all flights with ETAs 

within the 15-minute interval. 

3. Significant fractions of one-minute 

demand counts in adjacent one-minute 

intervals in a sector might contain the 

same flights while, at airports, adjacent 

15-minute intervals contain different 

flights. 

Our research has been focused on developing a 

methodology that allows for a quantitative 

representation of uncertainty in air traffic demand 

predictions for NAS elements [1] -  [6].  

Our previous research,
 
reported in [1] – [3], was 

focused on the accuracy of TFMS 15-minute 

aggregate traffic demand predictions without 

considering individual flights that comprise those 

aggregate counts.  We also developed a regression 

model aimed at improving the accuracy and 

stability of those aggregate predictions. The 

regression model included demand predictions at 

three consecutive 15-minute intervals with the 

interval of interest in the middle of the 45-minute 

time window. Including demand predictions in 

adjacent intervals implicitly takes into account the 

effect of uncertainty in predictions of arrival times 

for individual flights. The regression improved 

both the accuracy of demand predictions and the 

stability and accuracy of TFMS Monitor/Alert. 

The next step in our research, reported in [4] and 

[5], was focused on analyzing uncertainty in 

predictions of airport arrival times for individual 

flights and developing a methodology for 

translating the uncertainty in estimated time of 

arrival (ETA) for individual flights into uncertainty  

in aggregate 15-minute traffic demand predictions 

for arrival airports. The result was a methodology  

for probabilistic traffic demand predictions at 

airports with quantitative characteristics of 

uncertainty in the predictions. 

The motivation for using uncertainty in predicting 

times for individual flights in the characterization 

of uncertainty in predicting aggregate traffic 

demand is as follows. 

Current TFMS provides deterministic demand 

predictions by aggregating flights whose estimated 

times of arrival or departure (ETAs or ETDs) fall 

within a time interval of interest without 

considering uncertainty (random errors) in flight’s 

ETA or ETD. Those errors are the major 

contributors into uncertainty in aggregate demand 

count predictions. The “physical” mechanism that 

causes the errors in aggregate demand is migration 

of some flights’ ETAs from one time interval to 

another during flight updates due to random errors, 

so that a flight that counted in one interval can be 

counted in another (earlier or later) interval after 

updating its ETA. The question is how to formalize 

the translation of characteristics of uncertainty in 

individual flight timing predictions into 

characteristics of uncertainty in aggregate traffic 

demand predictions. 

A method that allowed for this translation was first 

proposed in [7]. The method provided the 

analytical means for obtaining a probability 

distribution of aggregate demand at a specific time 

interval of interest through probability distributions 

of errors in times of arrivals of individual flights 

predicted to arrive at this specific interval of 

interest. The method, however, did not consider an 

extended set of flights that also includes the flights 

predicted to arrive in several adjacent intervals. 

Considering the probabilities for those flights to 

arrive within the interval of interest will affect the 



probability distribution of aggregate demand for 

the interval of interest.  

Another approach was proposed in [8] for 

probabilistic prediction of aggregate traffic demand 

in en route sectors based on probabilistic 

characteristics of uncertainty for individual flights’ 

times to be in a sector.  In particular, the paper 

focused on considering the probability distributions 

of flight departure times from origin airports for 

estimating the expected number of flights in a 

sector.  

The paper presents a methodology and analytical 

results that demonstrate how characteristics of 

uncertainty in prediction of times for individual 

flights translates into characteristics of uncertainty 

in prediction of aggregate one-minute traffic 

demand counts in sectors.  Like our previous work, 

it is based on a statistical analysis of current TFMS 

data. The translation of the characteristics of 

uncertainty in TFMS predictions of times for 

individual flights into characteristics of uncertainty 

in predictions for aggregate demand counts is a 

challenging problem. However, it is much more 

complicated for sectors than for airports because of 

the differences in measuring traffic demands for 

these NAS elements.  

The paper is organized as follows. 

Section 2 presents characteristics of uncertainty in 

TFMS predictions of times for individual flights to 

cross sector boundary and be in a sector 

Section 3 presents the methodology for 

recalculating characteristics of uncertainty in 

individual flights’ timing predictions into 

characteristics of uncertainty in aggregate one-

minute demand counts for both entering a sector 

and being in a sector. 

Conclusions are given in Section 4. 

The Appendix contains a more detailed derivation 

of mathematical expressions necessary for 

probabilistic sector demand predictions.   

2. Characterization of uncertainty in TFMS 

flights’ sector entry and sector occupancy 

time predictions  

TFMS estimates and periodically updates sector 

entry times for individual flights. To estimate the 

accuracy of those predictions, the TFMS data was 

collected during the days of moderate demand 

when there were no TFM initiatives. Without such 

interference by TFM control, the errors in 

predictions can be measured by the difference 

between predicted and actual times.  The analysis 

was conducted on the TFMS data for sixteen en 

route sectors: ZBW02, ZBW09, ZBW17, ZBW20, 

ZBW46, ZID82, ZID83, ZID86, ZLC06, ZLC16, 

ZMP20, ZOB57, ZOB67, ZOB77, ZSE14, and 

ZTL43. The data included repeated updates for 

flight sector entry and sector exit times. Altogether, 

during April 10 through April 16 of 2009, there 

were approximately 834,000 time predictions for 

39,000 flights analyzed. The look-ahead times 

(LAT) for predictions varied from 0 (for actual 

times) to 3 hours.  

The data analysis was performed on the above 

mentioned data and on additional data set collected 

in April and June of 2007 and reported in [4]. The 

detailed results of analysis of accuracy in sector 

entry time predictions can be found in the Volpe 

report [6]. The distribution of prediction errors and 

their parameters (average and standard deviation) 

were estimated separately for active (airborne) 

flights and for proposed (not yet departed) flights. 

Figure 2-1 illustrates the typical probability density 

functions of prediction errors in sector entry times 

for active and proposed flights. 
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Figure 2-1 Probability density of errors in sector 

entry time predictions 

The results of analysis show and Figure 2-1 

illustrates that  

 For active flights, the distributions of 

prediction errors are somewhat 

asymmetric with a heavier right-hand tail, 

indicating a tendency for flights to enter 

sectors earlier than predicted 

 For the proposed flights, the distributions 

of prediction errors are asymmetric with 

heavy left-hand tails, indicating a 



tendency for flights on the ground to, on 

average, enter sectors later than predicted.   

 The standard deviation of error is 

substantially lower for active than for 

proposed flights.  It was in the 4 to 12 

minute range for active flights, and in the 

15 to 22 minute range for proposed flights.     

Sectors vary in size and in the manner flights 

traverse them. As a result, there are significant 

differences among the sectors in time-in-sector for 

a flight.  As for the accuracy of time-in-sector 

predictions, it is much better than for flight’s sector 

entry times and is not much different for active and 

proposed flights and for different LAT. For 

example, the standard deviation of time-in-sector 

error was 4 minutes or less for both active and 

proposed flights [6]. 

The probability distributions of flight timing 

predictions are fundamental for aggregating flights 

in probabilistic one-minute sector demand 

predictions. 

3. Probabilistic predictions of sector 

demand counts 

The number of flights in a sector during a specific 

one-minute interval includes the flights that entered 

the sector during this interval and the flights that 

entered the sector earlier and are still in a sector.  

As standard deviations of errors in sector entry 

time predictions are significantly greater than one 

minute, there are significant probabilities that a 

flight would enter a sector earlier or later than the 

flight’s ETA. Therefore, a probabilistic demand 

prediction at a specific one-minute interval would 

need to consider TFMS one-minute demand 

predictions for several consecutive one-minute 

intervals surrounding the interval of interest. 

The probabilistic predictions of sector one-minute 

demand counts require the following steps: 

1. Translate a flight’s time predictions and 

associated prediction errors into the probability 

for the flight to enter a sector during a 

particular minute. 

2. Develop a probabilistic characterization for the 

number of flights entering a sector, based on 

the probabilities from step 1. 

3. Develop probabilistic count predictions for the 

number of flights present in a sector during a 

particular minute (a one-minute traffic demand 

counts for a sector).  

Each step is considered below. 

3.1 Probability for a flight to enter a sector 

during a one-minute interval. 

Our report [6] presents a detailed analytical 

approach for determining probabilities for the 

flights to enter a sector during a one-minute 

interval depending on the flights’ estimated sector 

entry times (ETAs) and probability distributions of 

errors in predicting sector entry times.  The status 

of individual flights (active or proposed) is taken 

into account by using differences in accuracy of 

predicting sector entry time for active and proposed 

flights. This section presents an example of the 

flight probability to enter a sector during a one-

minute interval. 

Following the notation of [6], 

i is a one-minute interval of interest that is between 

the beginning of minute i and the beginning of 

minute (i+1), 

k is a one-minute interval for a flight’s estimated 

sector entry time (ETA), 

F(x) is a cumulative distribution function (CDF) of 

prediction error for sector entry time, 

kiP ,   is a probability for a flight deterministically 

predicted to enter a sector during a one-minute 

interval k to enter a sector during a one-minute 

interval i, 

kiP ,   ≈ 0.5 [F(i – k + 1) – F(i – k – 1)].                                                                             

It should be noted that, since the CDFs are different 

for active and proposed flights, separate 

calculations of probabilities are performed for 

active and proposed flights.  

These formulas permit the calculation of 

probabilities for various intervals of interest, 

including a series of consecutive intervals, e.g., i, 

i+1, i+2, etc.  

For the sake of simplicity, in the examples 

presented below, we assume that the prediction 

errors are symmetrically distributed.    

Table 3-1 shows several values of probabilities for 

different k, surrounding the interval of interest i. 

This table illustrates the probabilities for a flight to 

cross a sector boundary at an interval of interest i if 

it deterministically predicted to enter a sector 

earlier (k < i) or later (k > i) or on time (k = i). It 

also illustrates the relative significance of the 

probabilities depending on the time difference        

|i – k|. 



The probabilities have been calculated for the 

Gaussian distribution F
 
(x) with zero mean and 

standard deviations of σ = 4 minutes (which might 

correspond to the accuracy of predictions for active 

flights), and σ = 15 minutes (which might 

correspond to the accuracy of predictions for 

proposed flights). 

Table 3-1 Probabilities for Flights to Enter 

a Sector during Interval i 

Probability σ = 4 σ = 15 

Pi,i 0.099 0.027 

Pi,i+1 = Pi,i-1 0.096 0.027 

Pi,i+2 = Pi,i-2 0.087 0.026 

Pi,i+3 = Pi,i-3 0.075 0.026 

Pi,i+4 = Pi,i-4 0.060 0.026 

Pi,i+5 = Pi,i-5 0.046 0.025 

Pi,i+6 = Pi,i-6 0.033 0.025 

Pi,i+7 = Pi,i-7 0.022 0.024 

Pi,i+8 = Pi,i-8 0.014 0.023 

Pi,i+9 = Pi,i-9 0.008 0.022 

Pi,i+10 = Pi,i-10 0.005 0.021 

Pi,i+15 = Pi,i-15 0.000 0.016 

Pi,i+20 = Pi,i-20 0.000 0.009 

Pi,i+25 = Pi,i-25 0.000 0.007 

Pi,i+30 = Pi,i-30 0.000 0.004 

Pi,i+35 = Pi,i-35 0.000 0.002 

Pi,i+40 = Pi,i-40 0.000 0.001 

 

These probabilities tend to be small (less than 

0.10), since they correspond to single minutes.  For 

example, if a flight is deterministically predicted to 

enter a sector two minutes earlier (k = i-2) or two 

minute later (k = i+2) than the interval of interest i, 

the probability for the flight to enter a sector during 

interval i is smaller: Pi, i-2 = Pi, i +2 ≈ 0.087. 

For the active flights (σ = 4 minutes) with ETAs at 

least nine minutes from the interval of interest i 

(earlier or later) the probabilities to enter a sector 

during interval i are negligibly small (less than 

0.01).   

It is important to note that when predictions of 

sector entry times are less accurate, the probability 

for a flight to enter a sector in a particular minute 

becomes smaller, even in the  minute that it was 

forecast to enter the sector (approximately 0.027 

when σ = 15). 

Another important observation from Table 3-1 is 

that, since the standard deviations of prediction 

errors are much larger than one-minute, the 

probabilities for the flights to enter a sector do not 

vary much from one minute to the next.  In 

particular, for σ = 4 min, the probabilities for 

flights with ETAs in intervals i, i+1 and i -1 to 

arrive to a sector in interval i are, respectively equal 

to 0.099, 0.096 and 0.096, i.e., they are nearly 

identical.  For σ = 15, the corresponding 

probabilities a practically the same for the flights 

with ETAs in thirteen (!) intervals around the 

interval of interest i (including interval i). 

3-2  Number of Flights Entering a Sector 

During a One-minute Interval 

The results of the previous section can be used for 

characterization of uncertainty in prediction of 

number of flights entering a sector. 

Our report [6] describes a detailed analytical 

approach to the probabilistic prediction of 

aggregate one-minute sector entry counts based on 

probabilities for individual flights to enter a sector 

and on deterministic predictions of sector entry 

counts at various one-minute intervals. In this 

analysis, independence of errors in predicting times 

among the flights is assumed.  

The main result of taking into consideration 

characteristics of uncertainty in flights’ sector entry 

time predictions is that the flights with ETAs in 

several adjacent one-minute intervals to the interval 

of interest will be considered in calculating the 

aggregate demand in the interval of interest. For 

example, if dk flights deterministically predicted to 

enter a sector during one-minute interval k, there is 

the probability Pi,k  for each of the dk flights to enter 

the sector during the one-minute interval of interest 

i. Assuming that the errors in flight arrival 

predictions are independent, the probability 

distribution of number of flights from dk that can be 

counted in interval i is a binomial distribution. The 

total random number of flights predicted for a 

specific one-minute interval i is equal to the sum of 

the random numbers of flights from several 

adjacent intervals k that can be counted in the 

interval of interest i. The number of adjacent 

intervals β that should be taken into account 

depends on relative values of probabilities Pi, k  .    

β = max | i – k |, where max | i – k |  is the distance 

beyond which the probabilities kiP, become too 

small and should be neglected.  

According to the properties of the binomial 

distribution, the expected one-minute count id
~

 and 

the standard deviation of the one-minute count are 

equal to, respectively [14]: 
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where dk  is a deterministic prediction of sector 

entry counts for a one-minute interval k. 

The probabilistic prediction of one-minute flight 

counts entering a sector can be represented by the 

expected number id
~

 and the uncertainty area 

around the expected number:  id
~

± j iσ , where j 

determines a size of the uncertainty area restricted 

by certain percentiles. For j = 1,  id
~

 + iσ  

corresponds to the 84
th

 percentile, and                

id
~

- iσ corresponds to the 16
th

 percentile.  For        

j = 2, the percentiles are 2.3% and 97.7%. 

Consider an example of probabilistic prediction of 

number of flights entering a sector during a one-

minute interval when the errors in predicting sector 

entry times for individual flights are normally 

distributed with zero average and with standard 

deviation of 4 minutes (σ = 4 min). 

The probabilities Pi, k  in this case are shown in 

Table 3-1 for k = i-10, i-9, i-8, …, i-1, i, i+1, …, 

i+8, i+9, i+10,  i.e., for ten one-minute intervals 

from both sides of the interval i of interest.  The 

values of probabilities Pi, k   for k ≤ i – 9 and            

k ≥ i + 9, become too small and can be neglected. 

As a result, β = 8.  

Figure 3-1 illustrates an example where the 

predicted one-minute count for the interval of 

interest  (for i = 1200) is much higher than 

predictions in the adjacent intervals.  
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Figure 3-1  Sector Entry Counts 

The figure shows expected values for i = 1200 and 

uncertainty areas around the expected values 

restricted by ± σi. The expected values and 

standard deviations in those cases were calculated 

by using formulas (3.1) and (3.2) with numerical 

values of probabilities from Table 3-1 and demand 

values shown in the figure. 

The expected number of flights entering a sector 

in 1200 one-minute interval is equal to 2.7 flights, 

which is much smaller than deterministic 

prediction of 8 flights. The standard deviation is 

equal to 1.6. The uncertainty are in the figure 

indicates that with the 0.68 probability the number 

of flights entering the sector during a one-minute 

interval i = 1200 is between 1.1 and 4.2 flights with 

the expected number of 2.7 flights. 

This example illustrates how the probabilistic 

prediction for a particular one-minute interval 

depends on the predictions for several adjacent 

intervals.  If the deterministic prediction for the 

minute is unusually high (as it was in Figure 3-1), 

the probabilistic prediction will be lower.  

Conversely, in cases where the deterministic 

prediction for the minute is exceptionally low, the 

probabilistic prediction will be higher (see Figure 

3-2). 
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Figure 3-2  Sector Entry Counts 

3-3  Number of Flights in a Sector During a 

One-minute Interval 

In the previous section, we developed a 

probabilistic representation of the number of flights 

entering a sector at a particular 1-minute time 

interval i.  To develop a representation of the 

number of flights in a sector at interval i, we need 

to consider an additional factor: the time-in-sector 

for individual flights. 

The Appendix presents the mathematical 

expressions and analytical approach needed for 



probabilistic predictions of one-minute demand 

counts of the flights in a sector. The analytical 

formulas presented in the Appendix allow for 

determining probability distributions of one-minute 

demand predictions in a sector, calculating average 

and standard deviation of predicted number of 

flights in a sector at any one-minute interval by 

using deterministic predictions of sector demand 

and characteristics of uncertainty in predicting 

times of entering a sector for individual flights. The 

analytical results consider important factors for 

traffic demand predictions, such as status of 

individual flights (active or proposed) and 

difference in times in sector for various flights. 

What is important is that characteristics of 

probabilistic predictions of one-minute traffic 

demand in a sector depends heavily on probabilistic 

predictions of one-minute sector entry counts, 

considered in the previous section. 

The starting point for calculating one-minute sector 

demand is constructing the relationship between 

number of flights in a sector and the number of 

flights entering the sector.      

Let τ be the amount of time that a flight spends in a 

sector.  If the flight’s predicted entry time is k, its 

predicted sector exit time is k+ τ.  In this analysis, τ 

is assumed to be known and non-probabilistic.
1
   

The flight will be in the sector during minute i if 

the flight enters at or before minute i, and exits 

after minute i.  In inequalities, this is  

k ≤ i and  k+ τ > i.  

Hence, if dk is a number of flights deterministically 

predicted to enter a sector during a one-minute 

interval k and time in sector for each flight is τ, 

then the deterministic prediction of number of 

flights in a sector Di, τ  during one-minute interval i 

is 

Di, τ  = di  +  di - 1 + di - 2  + … + di - (τ - 2)  +  di - (τ-1)  

= 


i

ij
jd

1

 .                                            (3.3)           

For example, if k = 1158, i = 1200 and τ = 5 

minutes, the flight will be in the sector at 1200 if 

the actual entry time is between 1156 and 1200.  If 

the entry time is before 1156, the flight is too early, 

and will have left the sector before 1200.  If it is 

after 1200, the flight is too late.  This flight will be 

in the sector at 1200 if it enters the sector at any of 

                                                           
1
 Recall from Section 2 that the error in time-in-

sector is substantially lower than the error in sector 

entry time.   

the following times:  1156, 1157, 1158, 1159, and 

1200.   

The numbers of predicted flights entering a sector 

are not deterministic because of random errors in 

predicting times of entering the sector for 

individual flights. This case was considered in the 

previous section. 

In this case, the expected number of flights ,

~
iD in a 

sector in a one-minute interval i is, thus the sum of 

the expected numbers of flights entering the sector 

over a series of times (see formula (A5) in the 

Appendix):   

,

~
iD  = 

k

j

jk

kj

i
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dP

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



,

1

                      (3.4)   

where Pj, k  is a probability for a flight to enter a 

sector during interval j if it is predicted to enter the 

sector during interval k.                   

The formula (3.4) can be modified and presented in 

a more convenient form so that the expected 

number of flights in a sector ,

~
iD   is equal to (see 

formula (A6) in the Appendix) 

,

~
iD  = 

k

i

ik

ki dP










1

,,
   (3.5) 

where Pi, k, τ  can be interpreted as a probability for 

a flight to be in a sector during minute i if it is 

deterministically predicted to enter a sector during 

minute k. 

The standard deviation of one-minute sector 

demand counts is (see (A9) in the Appendix) 

 σ ( ,

~
iD ) = 












i

ik

kkiki dPP
1

,,,, )1(   (3.6) 

The formula for calculating probabilities Pi, k, τ is 

given in the Appendix (see formula (A7)). 

The analytical expression for probabilities Pi, k, τ , 

selects the probabilities Pi, k, τ  for certain 

combinations of i and k minutes only, for which the 

flights deterministically predicted to arrive in a 

sector at minute k satisfy specific constraints to be 

in a sector during minute i.  

The above results can be easily expanded to the 

case where flights have different time in sector (τ), 

since the probabilistic prediction is simply a matter 



of summing all of the predictions across the various 

in-sector times.  The resulting formulas can be 

found in [6].  

4. Conclusions 

The paper introduced a new analytical method for 

probabilistic prediction of traffic demand in en 

route sectors via transferring probabilistic 

characteristics of uncertainty in prediction times for 

individual flights into characteristics of uncertainty 

in aggregate one-minute demand predictions for 

sectors.   

The results of the analysis of uncertainty in 

individual flight predictions were used to develop a 

new methodology for probabilistic predictions of 

aggregate, one-minute traffic demand counts for 

sector boundary crossing and for the number of 

flights in a sector.  

Because the errors in sector entry time predictions 

are usually much greater than one minute, the 

probabilities for an individual flight with an ETA at 

a specific one-minute intervals to enter a sector at 

that interval is small (often less than 0.1). 

Moreover, the flights with ETAs close to (but not 

equal to) the one-minute interval of interest have 

nearly the same probabilities to enter a sector 

during the interval of interest. This justifies a 

fundamental result of the paper that, if the 

prediction errors of arrival time for individual 

flights is much greater than the time interval of 

interest for aggregate count predictions, then 

probabilistic predictions of aggregate number of 

flights for this interval should also consider the 

flights with ETAs in several neighboring 

intervals.   

The paper presented an analytical approach and 

methodology for translating characteristics of 

uncertainty in individual flight’s predictions into 

probabilistic predictions for sector demand counts. 

It was shown that probabilistic predictions of the 

number of flights in a sector are expressed through 

probabilistic predictions of number of flights 

entering a sector during several consecutive one-

minute intervals that, in turn, depend on 

probabilities for individual flights to enter a sector 

during various consecutive one-minute intervals. 

The number of intervals involved in the 

probabilistic predictions depends on both the 

accuracy of predicting times for individual flights 

and the predicted time-in sector for the flights.  

The results of the paper contribute to probabilistic 

predictions of congestion in airspace. These results 

can also be used to analytically evaluate the 

potential impact of improved accuracy in flight 

timing predictions on reducing uncertainty in 

traffic demand predictions, hence leading to better 

identification of congestion.  
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Appendix.  Probabilistic characterization of 

number of flights in a sector during a one 

minute interval 

In order to determine whether a flight is within a 

sector during a certain one minute interval, one 

needs to know the flight’s entry and exit time (the 

difference gives the total time for a flight to be in 

the sector, or the time required to traverse the 

sector). Aggregating all the flights that are 

predicted to be within the sector during a specific 

one-minute interval would provide the aggregate 

sector traffic demand for this minute.  

Suppose that the time to traverse the sector for each 

flight entering the sector is the same and equal to τ 

minutes. It means that each flight spends τ minutes 

within the sector since its entry before leaving the 

sector. Therefore, for each one-minute interval of 

interest, for example, interval i, the flights will be 

in the sector during this interval if they entered the 

sector during the interval i and (τ – 1) preceding 

one-minute intervals, i.e., during the one-minute 

intervals i, i - 1, i - 2, …, i - ( τ - 2), i - ( τ - 1).This 

provides the opportunity to determine the sector 

traffic demand count predictions at any one-minute 

interval through the series of one-minute aggregate 

number of flights entering the sector during several 

consecutive one-minute intervals. In particular, 

deterministically predicted traffic demand Di in a 

sector for a one-minute interval i is equal to      

Di, τ  = di + di - 1 + di - 2 +…+ di - (τ - 2)  +  di - (τ - 1)    

=  


i

ij
jd

1

 ,                        (A1) 

where dk is deterministically predicted number of 

flights entering a sector during a one-minute 

interval k. 

It is important to notice that each component dk in 

(A1) consists of different flights. 

The deterministically predicted number of flights in 

a sector during s one-minute intervals immediately 

following the interval i can be expressed 

recursively as follows 

 Di + s, τ  = di + s  +  Di + s  - 1, τ  - di – τ  + s ,            

s = 0, 1, 2, 3, …                         (A2) 

Formula (A2) shows that the one-minute sector 

demand for the (i + s) minute is equal to the 

demand prediction in the previous (i + s -1) one-

minute interval plus the number of flights entering 

a sector during the (i + s) minute minus the number 

of flights di – τ  + s  that left the sector during the       

(i + s) minute (those flights are the ones that 

entered the sector τ minutes prior to the (i + s) 

minute). 

Due to random errors in predicting number of 

flights that enter a sector, the sector demand for a 

one-minute interval is actually a random number 

that can be represented by a formula like (A1), 

where each component of the sum is a random 

number of flights entering a sector during the 

corresponding one-minute intervals. If ,

~
iD  is the 

random number of flights predicted to be in a 

sector during one-minute interval i then it can be 

determined as follows: 

,

~
iD  = 

id
~

+ 1

~
id + 2

~
id + … + )2(

~
 id + 

)1(

~
 id  = 



i

ij
jd

1

~



,                            (A3)  



where jd
~

 is a random number of flights predicted 

to enter a sector during a one-minute interval j. 

Therefore, according to (A3), the average predicted 

traffic demand iD
~

 in a sector for a one-minute 

interval i is equal to the sum of average numbers of 

flights entering the sector during τ consecutive one-

minute intervals: during the interval i and (τ – 1) 

intervals preceding interval i: 

,

~
iD   = 



i

ij
jd

1

~



,                                     (A4) 

where the average number of flights jd
~

  predicted 

to cross the sector boundaries during one-minute 

interval j (for j = i, i – 1, i – 2, … , i – τ + 1) are 

determined by formula (3.1). 

After substituting jd
~

 in (A4) with (3.1), the 

equation (A4) is as follows: 

,

~
iD   =   







i

ij
k

j

jk

kj dP
1

,







.               (A5)                                           

After several simple transformations, equation (A5) 

can be rewritten as follows: 

 ,

~
iD   = 

k

i

ik

ki dP
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where Pi, k, τ is the probability for a flight to be in a 

sector during a one-minute interval i if it is 

deterministically predicted to enter a sector during 

one-minute interval k and be in a sector during time 

interval τ. 

The probabilities Pi, k, τ  are determined by the 

following summation, for various values of k: 

,, kiP   = 




),min(

)1,max(

,





ki

ikj

kjP                             (A7), 

where i – β – τ + 1 ≤ k ≤ i + β  ,   

where Pj, k  is a probability for a flight to enter a 

sector during a one-minute interval j if its ETA to 

enter a sector is in the one-minute interval k.   In 

other words, this summation states that: 

-  the relevant values of j are those ranging from    

i-τ+1 to i, and 

-  we are only interested in those values of j that are 

within  β of k.   

If a flight deterministically predicted to enter a 

sector during interval k has the probability Pi, k, τ to 

be in a sector during interval i, then the predicted 

number of flights in the sector during the one-

minute interval i is a binomially distributed random 

number.  

The variance Var ( ,

~
iD ) and standard deviation 

σ( ,

~
iD ) of one-minute counts in a sector during 

minute i are, respectively, equal to 

Var ( ,
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k
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The expressions (A6) and (A9) can be easily 

extended in the case when traffic demand contains 

both active and proposed flights. The 

corresponding formulas can be found in [6].  

This section presented the basic results necessary 

for probabilistic characterization of one-minute 

sector traffic demand that consists of flights with 

the same time for traversing a sector.  

Analytical results for the case when the flights have 

different times in sector are presented by the 

authors in [6].     
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